
Simple Screen Savers
by Paul Warren

There is nothing like a screen
saver to bring out the frus-

trated artist in me. Screen savers
give me a chance to experiment
with graphics, animations and
sound without worrying about
things like deadlines. They are
pure fun. Unfortunately, I’ve been
asked to write custom screen sav-
ers often enough that I’m getting
tired of coding them from scratch.
I had to develop an automated cod-
ing system and some animation
components to restore the fun.

I still have to support more
Windows 3.1 systems than Win95
so I generally develop in Delphi 1
and port to Delphi 2 but for this
article I will show 32-bit code exam-
ples. If you are working in Delphi 1
don’t worry, 16-bit code is included
on this month’s disk too.

The Screen Saver Application
The first screen saver I ever wrote
used the OWL framework from
Borland Pascal 7.0. It was a crude
and unsuccessful effort which
served only to start me on the long
road to useful animations.

The next couple of screen savers
used Delphi but relied on the same
Windows API routines I had used in
the original. One big difference
Delphi made for me though, was to
simplify the application frame-
work. This allowed me to concen-
trate on improving the animations.

The easiest part of creating a
Delphi screen saver is the applica-
tion framework. All you need to do
is create a new blank project, set a
few properties for the main form,
add a couple of lines of code and
you have a nearly complete, albeit
boring, screen saver.

I generally make the main form
small so as not to clutter the desk-
top. Set the BorderStyle property
to none, Color to something pleas-
ing and FormStyle to fsNormal. In the
OnCreate method I size and position
the form to the screen. I don’t use

WindowState := wsMaximized

because the form doesn’t
maximize properly in Win95. Next,
I give the application a title, by
convention this is

Screen Saver.SomethingDescriptive

Since Windows is going to activate
your screen saver periodically you
must check for any previous
instance of the application before
allowing a new instance to run,
otherwise you could end up with
many active copies after an ex-
tended period of inactivity. The
easiest way to check for another
instance of the application in
Delphi 1 is to insert the line

if HPrevInst <> 0 then Exit;

in the project (.DPR) file after the
first begin. Things are more compli-
cated in Win95. I use code from The
Delphi 2 Developers Guide, page
907, to determine if another
instance of my app is running. List-
ing 1 shows the complete project
source file for the screen saver
application.

Note the second line of Listing 1.
This is necessary to tell Windows

that the application is a screen
saver. Delphi’s Help describes the
Description Directive as “Inserts
the specified text into the module
description entry in the header of
an EXE file or DLL.”

Windows uses a command line
parameter to tell your screen saver
when the user has clicked the
setup button. The command line
parameter is -C or /C or just C. In the
simplest implementation the Setup
Form is just an About box. For 32-
bit screen savers Win95 issues a
second parameter /P or P, the pre-
view parameter. The simplest way
to respond to this one is to Exit.
Many thanks to Bob Swart for the
info on this parameter.

Finally you have to add event
handlers for KeyDown, MouseDown and
MouseMove events to terminate the
screen saver when activity re-
sumes. Optionally, and certainly by
convention, you can turn off the
cursor when your screen saver
starts and turn it on when it termi-
nates. You should also capture the
mouse to your main form using
SetCaptureControl(Self).

Believe it or not, after compiling
the program and changing the .EXE

program SBASIC32;
{$D SCRNSAVE: Screen Saver.Boring}
uses
 Windows, Forms, SysUtils,
 Main in ’Main.pas’ {SaverForm},
 About in ’About.pas’ {AboutBox};
{$R *.RES}
var
 CmdLine: String;
 MutHandle: THandle = 0;
begin
 MutHandle := OpenMutex(MUTEX_ALL_ACCESS, False, ’Screen Saver.Boring’);
 if MutHandle = 0 then
 MutHandle := CreateMutex(nil,false,’Screen Saver.Boring’)
 else Exit;
 CmdLine := UpperCase(ParamStr(1));
 if (CmdLine = ’/P’) or (CmdLine = ’-P’) or (CmdLine = ’P’) then Exit;
 if (CmdLine = ’/C’) or (CmdLine = ’-C’) or (CmdLine = ’C’) then begin
 AboutBox := TAboutBox.Create(Application);
 AboutBox.ShowModal;
 AboutBox.Free;
 end else begin
 Application.Title := ’Screen Saver.Boring’;
 Application.CreateForm(TSaverForm, SaverForm);
 Application.Run;
 end;
end.

➤ Listing 1

26 The Delphi Magazine Issue 16

file’s extension to .SCR you now
have a working screen saver. You’ll
find complete source on the disk as
SBASIC16.DPR and SBASIC32.DPR.

A Screen Saver Expert
Even the small amount of coding
needed to create a screen saver
application framework can be
avoided by writing an expert to do
the job. Normally this would be
time consuming but if you read my
article in Issue 13 you know I have
an expert-creating expert that’s
just right for the job. Naturally I
used this to create my screen saver
expert.

16-bit and 32-bit experts are in-
cluded on the disk. You could also
install the basic screen saver appli-
cation in the Delphi 1 Gallery or
Delphi 2 Object Repository.

Extending The Screen Saver
Obviously you would quickly get
tired of a plain colored screen ap-
pearing after an idle period. There
are a number of simple things you
can do to improve the situation.
You could put a TImage on the main
form and set the Picture property
to your favorite bitmap, or you
could paint the form with a pat-
terned brush in the OnShow method.
But let’s face it, without animations
a screen saver is boring.

In Issue 1 Xavier Pacheco demon-
strated some useful sprite anima-
tion techniques. I decided to use
the same general methods, but I
wanted more re-useable code; in
other words my animation system
would be written as components.

The TSprite
My TSprite component, descended
from TGraphicControl via TCustom-
Sprite, has ANDImage and ORImage
properties to hold an image and
mask. To draw the sprite you have
to copy the ANDImage to a canvas
using the bitwise AND operator. You
then copy the ORImage using the OR
operator. This procedure was
explained very well by Xavier
Pacheco so I won’t go into detail
[You can download an electronic
version of Issue 1 from our Web site.
Editor]. Suffice it to say that copy-
ing the two images this way allows
the background to show through

wherever the ANDImage mask is
drawn.

I wanted to do the drawing to
TSprite’s Parent.Canvas but this
won’t work. In the Delphi VCL,
Canvas properties are declared
protected and are read only.
TSprite can’t access the Canvas
property of its parent. You can cre-
ate a new component, say a
TXPanel, and re-declare its Canvas as
public (read/write), but then you
can only drop a TSprite on a
TXPanel. Any component that
causes an error when you drop it
on the wrong component wouldn’t
be well received.

One possible solution is to AND
and OR the images to the TSprite’s
own canvas and actually move the
component to animate it. This
would be an elegant solution since
the sprite could be animated at de-
sign time. I actually got a sprite
working this way but here Delphi
itself let me down (for the first
time). The problem was that I was
drawing each image directly to the
canvas and with each drawing
Delphi makes two Invalidate calls.
This makes four drawings for each
move of the sprite. As you can
imagine, for all but the smallest
sprites the flicker was something
to behold.

I finally settled on a sort of hy-
brid component for the working
system. I wrote a Paint method
(see Listing 2) that would copy the
image to the component’s Canvas at
design time. At run time though,
Paint would do nothing. I would
control the drawing from another
component, a sort of drawing sur-
face. This way I felt I could achieve
smooth animations and still have a

component which would behave
properly when designing.

Since the Left and Top properties
hold the design time location of
TSprite I added SLeft and STop
properties to hold the location of
the moving sprite at run time. This
stopped some strange behavior:
the sprite would be at a different
location after running the applica-
tion from the IDE.

There is also a MoveSprite public
method which, when called,
changes the sprite’s SLeft and STop
properties in the direction of the VX
and VY accelerator properties.
MoveSprite is the animation engine.

The TSpriteBox
Drawing Surface
TSpriteBox is a drawing surface for
TSprite. I tried descending from a
TPaintBox initially, hence the name.
I gave the component BackGnd1 and
BackGnd2 properties of type TBitMap
to handle the off-screen drawing
and a field FSprite of type TSprite.
In the Create constructor there are
calls to create the BackGnd bitmaps.
The destructor looks after freeing
the BackGnd bitmaps. To handle the
animation I added a DrawSprite
method using Windows API rou-
tines to draw the sprite off-screen.
Finally, the Paint method needed
an override to copy BackGnd1 to the
Canvas whenever a WM_PAINT mes-
sage gets processed (see Listing 3).

The next step is to size the bit-
maps when the component is
loaded. When bitmaps are created
the Width and Height properties are
both 0 so there is nothing to draw
on. I set the bitmap size to that of
the component in the Loaded
method.

{ Paint the component as a dashed clear box the size of any loaded image,
 with the image rendered, at design time. Do nothing at run time. }
procedure TSprite.Paint;
begin
 if csDesigning in ComponentState then
 with Canvas do begin
 Pen.Style := psDash;
 Brush.Style := bsClear;
 Rectangle(0, 0, Width, Height);
 CopyMode := cmSrcAnd;
 CopyRect(ClientRect,FANDImage.Canvas,ClientRect);
 CopyMode := cmSrcPaint;
 CopyRect(ClientRect,FORImage.Canvas,ClientRect);
 end;
end;

➤ Listing 2

December 1996 The Delphi Magazine 27

After compiling TSpriteBox and
TSprite into my component palette
I tried them out. I placed a TSprite-
Box on a new form and added a
TSprite and a TTimer. Then I set the
ANDImage and ORImage properties of
TSprite. The sprite image dis-
played properly at design time so I
gave myself a pat on the back.

In the TTimer’s OnTimer event I
made a call to SpriteBox1.
DrawSprite then compiled and ran
the project. Unfortunately the
sprite started to move but quickly
disappeared. I puzzled over this for
a while until I realized the drawing
bitmaps were the size of the
component when it was loaded and
not the size after I had aligned my
component to the form. The
solution was to descend from
TCustomControl.

Descending From
TCustomControl
Delphi provides a number of Cus-
tom... base classes in the VCL. One
of them is called TCustomControl,
which descends from TWinControl
and as such has the methods and
properties to process messages
and to own other components.

By descending TSpriteBox from
TCustomControl I could make my
drawing surface respond to the
Windows WM_SIZE message and
re-size the drawing bitmaps any
time the component changed size.
At the same time I added a method
called DrawBMP to isolate the sizing
from the drawing of the back-
ground. After these changes my
TSprite worked properly.

Extending
TSpriteBox Capabilities
Once I had TSpriteBox working my
imagination started to run riot.
There seemed to be any number of
enhancements that would meet all
my requirements for a truly univer-
sal screen saver, not to mention
other uses. I immediately thought
of different colors, a background
gradient and background images.

Adding color is quite simple. A
property Color of type TColor
serves to hold the selected color
and the SetColor method writes the
chosen color to the FColor field as
well as calling DrawBMP, which sets

the current brush color and then
calls FillRect, which fills the
BackGnd1 bitmap with the current
brush. A call to Invalidate forces
the BackGnd1 bitmap to be painted
to the Canvas.

A gradient is not much harder.
The method I called GradientFill. I
chose FillRect again but this time
I repeatedly used a Rect parameter
which is a fraction of the screen
Height and a progressively darker
color. The Gradient property is
type boolean and the SetGradient
method sets the property and
again calls DrawBMP.

Adding an image proved a little
harder. I didn’t want to just stretch
the image to the background be-
cause of aspect ratio distortions,
although I did want this as an op-
tion. If an image is not stretched I
wanted the choice of centering it or
leaving it at the top left corner.

Apart from having a colored
background and possibly a gradi-
ent the image behavior would have
to be the same as TImage. Here, the
VCL source was indispensible. The

paint method of TImage calculates
the TRect based on the Stretch and
Centered properties. This was ex-
actly what I needed. In the DrawBMP
method I set the color first, then
add the gradient if requested and
finally calculate the TRect for an
image if required. As with the Color
and Gradient properties I used an
Image property of type TBitMap and
in the SetImage method I call
DrawBMP. The Stretch and Center
properties hold the user’s selec-
tions and SetStretch and SetCenter
methods also call DrawBMP. See
Listing 4.

About this time I realized
TSpriteBox was a useful component
for displaying images even without
animating sprites. Animation was
the reason for creating the compo-
nent though and the final enhance-
ment would be the ability to
animate any number of sprites.

Iterating The Control List
All TControl descendants can own
other components. They have a
property called Controls of type

procedure TSpriteBox.Paint;
begin
 Canvas.StretchDraw(ClientRect, FBackGnd1);
end;

➤ Listing 3

procedure TSpriteBox.DrawBMP;
var Dest: TRect;
begin
 { set size of BackGnd1 }
 FBackGnd1.Width := Width;
 FBackGnd1.Height := Height;
 { set brush color }
 FBackGnd1.Canvas.Brush.Color := FColor;
 { fill BackGnd1.Canvas }
 if FGradient then GradientFill(FColor,clBlack)
 else FBackGnd1.Canvas.FillRect(ClientRect);
 { if Image set then... }
 if (FImage.Width <> 0) and (FImage.Height <> 0) then begin
 { ...set Dest values... }
 if Stretch then
 Dest := ClientRect
 else if Center then
 Dest := Bounds((Width - FImage.Width) div 2,
 (Height - FImage.Height) div 2,
 FImage.Width, FImage.Height)
 else
 Dest := Rect(0, 0, FImage.Width, FImage.Height);
 end;
 { ...StretchDraw to BackGnd1.Canvas }
 FBackGnd1.Canvas.StretchDraw(Dest, FImage);
 { copy backgnd1 to backgnd2 }
 FBackGnd2.Assign(FBackGnd1);
 Invalidate;
end;

➤ Listing 4

28 The Delphi Magazine Issue 16

TList and a property called Con-
trolCount which is the number of
controls owned by the component.
Using these properties and RTTI on
the owned components it is possi-
ble to iterate through the controls
list and, if they are of type TSprite,
call TSprite.MoveSprite.

To implement this system I re-
moved the property Sprite from
TSpriteBox since it was no longer
needed. Then I changed DrawSprite
to the code in Listing 5.

Events Versus Methods
The only thing I didn’t like about
the sprite system so far was the
hardcoded TSprite.MoveSprite
method. Sure I could create a de-
scendant and override the
MoveSprite engine to achieve differ-
ent sprite movement, but this
would be messy. There would be
TXSprites cluttering up my palette
and every time I wanted a new ani-
mation I would probably end up
creating another TXSprite. There
had to be a better solution.

An event handler solved the
problem. I created a type
TSpriteMoveEvent with a variable
Bounds to pass the sprite’s present
location and to return the desired
new location (Listing 6). Within the
old MoveSprite method I make a call
to any assigned OnMove event and
change the SLeft and STop proper-
ties accordingly (see Listing 7).
Now TSprite has a plug-in engine.
Figure 1 shows a demo application
in simulated action. Don’t worry if
this image doesn’t give you the true
sense of what can be done, the
demo is included on the disk along
with all the code.

Back To The Screen Saver
Now we can finally finish the screen
saver. Using the screen saver ex-
pert create an application frame-
work. Name it ScreenSaver.Sprite,
choose an About Box and click OK.
Add a TSpriteBox to the form and
set TSpriteBox.Align to alClient.
Drop a TSprite on the form and
insert an image and mask of your
choice (there are some examples
on the disk). Your form should look
like Figure 2.

Finally, insert the code in Listing
8 into the Sprite1.OnMove event and

put SpriteBox1.DrawSprite in the
Application.OnIdle event defined
by the expert.

I should point out here that you
could just as easily use a TTimer to
animate the sprite but somehow

the Application.OnIdle event
seems neater. I find you must call
the API routine

PostMessage(
 Handle, WM_USER + 1,0,0)

➤ Figure 1

procedure TSpriteBox.DrawSprite;
var i, OldLeft, OldTop: integer;
begin
 for i := 0 to ControlCount-1 do begin
 if (Controls[i] is TSprite) then begin
 with (Controls[i] as TSprite) do begin
 OldLeft := SLeft;
 OldTop := STop;
 MoveSprite;
 { Erase the old sprite in BackGnd2 }
 BitBlt(BackGnd2.Canvas.Handle, OldLeft, OldTop, Width, Height,
 BackGnd1.Canvas.Handle, OldLeft, OldTop, SrcCopy);
 { Draw the sprite at the new location in BackGnd2 }
 BitBlt(BackGnd2.Canvas.Handle, SLeft, STop, Width, Height,
 ANDImage.Canvas.Handle, 0, 0, SRCAND);
 BitBlt(BackGnd2.Canvas.Handle, SLeft, STop, Width, Height,
 ORImage.Canvas.Handle, 0, 0, SRCPAINT);
 { Copy a rectangle from BackGnd2 to erase and reposition
 the sprite to the form’s canvas }
 BitBlt(Canvas.Handle, OldLeft - 2, OldTop - 2, Width + 2,
 Height + 2, BackGnd2.Canvas.Handle, OldLeft - 2,
 OldTop - 2, SrcCopy);
 end;
 end;
 end;
end;

➤ Listing 5

{ MoveSprite: set bounds to size and LOCATION of image. Trigger an OnMove
 event. Set the location of sprite to any changed value of bounds. }
procedure TSprite.MoveSprite;
var Bounds: TRect;
begin
 Bounds := Rect(SLeft,STop,SLeft+Width,STop+Height);
 if Assigned(FOnMove) then OnMove(Self, Bounds);
 SLeft := Bounds.Left;
 STop := Bounds.Top;
end;

➤ Listing 7

type
 TSpriteMoveEvent =
 procedure(Sender: TObject; var Bounds: TRect) of object;

➤ Listing 6

December 1996 The Delphi Magazine 29

or the DrawSprite method only exe-
cutes once, though I’m not really
sure why.

When you run the application
you should see a bouncing sprite.
You can play with the color, image
and gradient properties until you
have the screen saver you want,
then just change the executable’s
extension to .SCR and move it to
your Windows directory. Hey
presto! A nice new screen saver.

The Setup Form
In a more sophisticated screen
saver you may want users to select
from various options. To do this
you must use a setup form which is
created when your application re-
ceives a C command line parameter
from Windows. You pass the user’s
choices back to the application
through the WIN.INI file. If you want
to see how a setup form works in
more detail look at the demo
project FESTIVE.DPR on the disk.

A Word About Passwords
Many screen savers have pass-
word support added so that you
can leave your desk and have your
work secured. I haven’t imple-
mented passwords here for
two reasons. First, passwords
are implemented differently in

Windows 3.1 and Win95 and to be
frank I don’t know how they work
in Win95. Second, I don’t know any-
one who uses passwords for their
screen savers. I guess if your work
is that important you wouldn’t rely
on a screen saver for security. For
anyone who wants to add pass-
word support, though, I don’t think
it would be too hard.

Conclusion
With the coding basically auto-
mated we can now concentrate on
the fun part of creating screen sav-
ers. Since TSpriteBox handles any
number of sprites and they can be
driven with one or more algorithms
there is little to limit your creativ-
ity. Try it, create some screen
savers and have fun.

This being the holiday season we
couldn’t resist creating a special
festive screen saver (see the
screen shot on the cover), which
you’ll find on this month’s disk. If
you have a sound card be sure to
set the Sound option to True. A
ready-compiled 16-bit version,
plus the background bitmap
(which was too big to fit on the
disk) and some extra example
sprites can be downloaded from
our Web site at
 http://members.aol.com/delphimag

Paul Warren runs HomeGrown
Software Development in Lan-
gley, British Columbia, Canada
and can be reached by email at
hg_soft@uniserve.com or visit
http://haven.uniserve.com/~hg_soft

➤ Figure 2

procedure TSaverForm.Sprite1Move(Sender: TObject; var Bounds: TRect);
var i: integer;
begin
 if ((Bounds.Left <= 0) or (Bounds.Right >= SpriteBox1.Width)) then
 (Sender as TSprite).VX := -(Sender as TSprite).VX;
 if ((Bounds.Top <= 0) or (Bounds.Bottom >= SpriteBox1.Height)) then
 (Sender as TSprite).VY := -(Sender as TSprite).VY;
 Bounds.Left := Bounds.Left+(Sender as TSprite).VX;
 Bounds.Top := Bounds.Top+(Sender as TSprite).VY;
end;

➤ Listing 8

30 The Delphi Magazine Issue 16

	The Screen Saver Application
	A Screen Saver Expert
	Extending The Screen Saver
	The TSprite
	The TSpriteBox Drawing Surface
	Descending From TCustomControl
	Extending TSpriteBox Capabilities
	Iterating The Control List
	Events Versus Methods
	Back To The Screen Saver
	The Setup Form
	A Word About Passwords
	Conclusion

